Alphamaths.

4°MATH.

COURS.

1.

NOMBRES COMPLEXES.

I- RAPPEU.

<u>l°-l'imaginaire i....</u>

2°- Définition....

3°- forme algébrique d'un complexe....

<u>4°- forme trigonométrique d'un complexe....</u>

II- NOMBRES COMPLEXES ET GEOMETRIE.

I°-Affixe d'un point et d'un vecteur....

2°-Avec deux point....

3°-Avec deux vecteu....

1°- l'imaginaire i :

On appelle i un nombre dont le carré est -1.

On décrète que i est la racine de -1.

Ainsi : $i^2 = -1$. Et alors, aussi : $(-i)^2 = -1$

2°- Définition

On appelle corps des nombres complexes, et on note $\mathbb C$ un ensemble contenant $\mathbb R$ tel que :

- Il existe dans $\mathbb C$ un élément noté i tel que $\mathbf i^2 = -1$
- Tout élément de ℂ s'écrit sous la forme (a + ib), où a et b sont des réels.
- \cdot $\mathbb C$ est muni d'une addition et d'une multiplication qui suivent les mêmes règles de calcul que celles connues dans $\mathbb R$

Un nombre complexe sera souvent représenté par la lettre z.

<u> 3°-Forme algébrique d'un nombre complexe :</u>

L'écriture z=a+ib est la forme algébrique du nombre complexe z.

- a est la partie réelle de z, on note $a=R\acute{e}(z)$.
- b est la partie imaginaire de z, on note b=Im(z).

Nombres complexes particuliers :

Soit un nombre complexe z = a + ib avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

- · Si b = 0, on a z = a, z est un réel.
- \cdot Si a = 0, on a z = ib, on dit que z est un imaginaire pur (on dit parfois simplement imaginaire).

Conjugué d'un nombre complexe :

Soit z un nombre complexe de forme algébrique a + ib.

On appelle conjugué de z le nombre complexe noté \bar{z} tel que \bar{z} = a - ib.

Opérations dans C:

Les opérations sur les nombres complexes (somme, produit, quotient, opposé, inverse, puissance ...) sont analogues aux celles dans IR.

Egalité de deux complexes :

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

C'est-à-dire que si a, b, a', b' sont des réels, on a

$$a + ib = a' + ib' \Leftrightarrow (a; b) = (a'; b') \Leftrightarrow \begin{cases} a = a' \\ b = b' \end{cases}$$

Conséquence : z=a+ib est nul \Leftrightarrow a=b=0.

4°- Forme trigonométrique d'un nombre complexe :

Module d'un nombre complexe :

Soit le nombre complexe z de forme algébrique a + ib. On appelle module de z le nombre réel positif r= $\sqrt{a^2 + b^2}$ On note r=|z|.

Argument d'un nombre complexe (non nul) :

Soit le nombre complexe z de forme algébrique a + ib et de module r. $(\cos \theta = \frac{a}{2})$ On appelle argument de z tout angle heta vérifiant : On note $Arg(z) \equiv \theta[2\pi]$.

Remarque : un complexe admet plusieurs arguments.

Forme trigonométrique d'un nombre complexe (non nul) :

La forme trigonométrique d'un nombre complexe z non nul est : z = r. $(\cos\theta + i \sin\theta)$, où: $r = |z| \in IR^*$ et $\theta = Arg(z) \in IR$.

Propriétés sur les modules :

 $|z|=0 \Leftrightarrow z=0$; |-z|=|z|; $|\bar{z}|=|z|$; $|z+z'| \leq |z|+|z'|$ $|zz'| = |z| \cdot |z'|$; $|z^n| = |z|^n$, $n \in IN^*$; si $z' \neq 0$ alors |1/z'| = 1/|z'|et |z/z'| = |z|/|z'| $z\bar{z} = |z|^2$ (donc $z\bar{z} \in IR+$); si $z\neq 0$ alors $1/z=\bar{z}/|z|^2$.

Propriétés sur les arguments :

Soient z et z' deux nombres complexes non nuls, on a :

- $arg(zz') \equiv arg z + arg z' [2\pi]$
- · arg $(1/z)\equiv$ arg z [2 π]
- · $arg(z/z') \equiv arg z arg z' [2\pi]$
- arg $(z^n) \equiv n$ arg z• arg $(\overline{z}) \equiv -$ arg z[2_π]
- [2π]
- arg $(-z) \equiv arg z + \pi$ $[2\pi]$

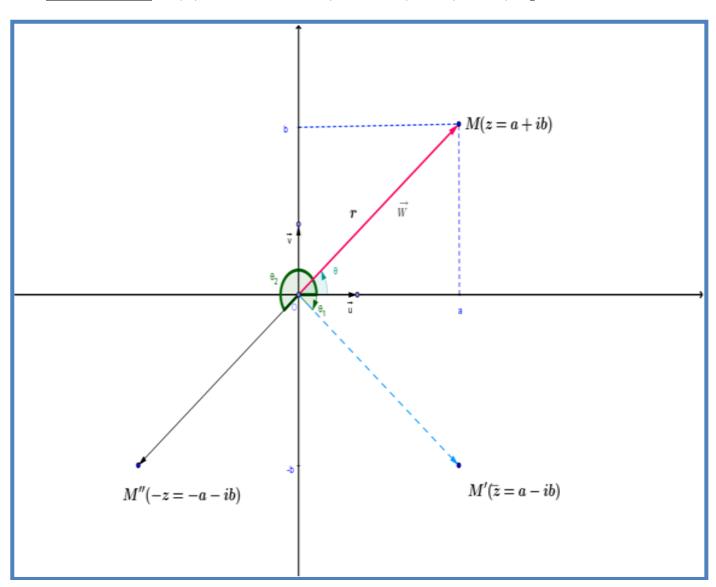
II/- NOMBRES COMPLEXES Et GEOMETRIE.

Le plan (P) rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$ est appelé **plan** complexe.

<u>1°- affixe d'un point - affixe d'un vecteur :</u>

A tout nombre complexe z=a+ib, on peut associer dans (P) Le point M (a; b) ou le vecteur $\vec{w} = OM(a, b)$.

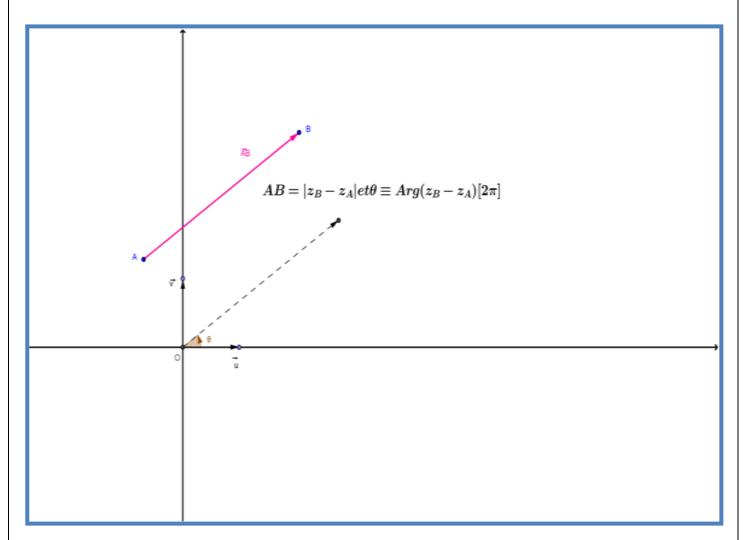
- <u>La distance OM</u> : r=|z|
- L'angle $(\vec{u}, \overrightarrow{OM})$: θ =Arg(z)
- <u>Le point M'</u>=S_(0, \vec{u}) (M) : M' ($\bar{z} = a ib$) et (\overrightarrow{u} , $\overrightarrow{OM'}$)= $\theta_1 = -\theta$ <u>Le point M''</u>=S₀(M) : M'' (-z=-a-ib) et (\overrightarrow{u} , $\overrightarrow{OM''}$)= $\theta_2 = \theta + \pi$



2°- avec deux points :

Soient A et B deux points distincts de (P) d'affixes respectifs z_A et z_B .

- Le vecteur \overrightarrow{AB} est d'affixe : $z_{\overrightarrow{AB}}$ = z_{B} - z_{A}
- Distance entre A et B : $AB = ||\overrightarrow{AB}|| = |z_B z_A|$.
- L'angle formé par \vec{u} et \overrightarrow{AB} : $\theta = (\overrightarrow{u}, \overrightarrow{AB}) \equiv \text{Arg } (z_B z_A) [2\pi]$.



3°- avec deux vecteurs :

Soient \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs de (P), où A (z_A); B (z_B); C (z_C) et D (z_D) sont des points distincts de(P).

- L'angle formé par \overrightarrow{AB} et \overrightarrow{CD} : $(\widehat{\overrightarrow{AB},\overrightarrow{CD}}) \equiv \text{Arg } (\frac{z_D z_C}{z_B z_A})[2\pi]$.
- \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires $\Leftrightarrow \frac{z_D z_C}{z_B z_A}$ est réel.
- \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux $\Leftrightarrow \frac{z_D z_C}{z_B z_A}$ est imaginaire pure.

